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2D materials: Dichalcogenides & Graphene
This class of 2D materials offers a rich variety of physics useful for fields  
such as optoelectronics. It has been in the center of quantum optics  
research over 10 years now since the advent of graphene. Typically these 
materials are characterized and further studied at low temperatures, to 
minimizes thermal broadening of the photoluminescence spectra, and often 
under high magnetic fields in Faraday & Voigt geometry. The attoCFM I offers 
an ideal platfrom for magneto-optical studies in conjunction  with the 
automated attoDRY2100 cryostat.

µ-Raman spectroscopy
Graphene has seen tremendous interest in solid state physics and Raman 
spectroscopy was one of the central techniques to characterize its properties 
from the start. The attoRAMAN offers the unique possibility to extend such 
studies not only over a broad temperature range between 1.65 .. 300 K, but 
also to high magnetic fields. In cooperation with the group of M. Potemski, 
we recorded magneto-Raman spectra at 4 K on an exfoliated single crystal of 
natural graphite with unprecedented spatial resolution (approx. 0.5 μm), while 
sweeping the magnetic field from -9 T to +9 T, showing the crossing of the E2g 
phonon energy with the electron-hole separation between the valence and 
conduction Landau levels (-N,+M) of the Dirac cone.

(attocube application labs, 2011; work in cooperation with C. Faugeras, P. Kossacki, and M. 

Potemski, LNCM I - Grenoble, CNRS_UJF_UPS_INSA France)
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Photocurrent measurements
Using our sample holders with electrical contacts, photocurrent 
measurements in variable field and temperature are easily possible.  
For example, the group of P. Sutter has used our fiber-based attoCFM II for 
spatially resolved photocurrent measurements on a graphene field-effect 
device in the QHE regime. They studied the distribution of Landau levels 
and its relation with macroscopic transport characteristics [1].  
The exceptional stability and the ease of use of the attoCFM microscope 
greatly facilitated these measurements and allowed for measuring working 
devices in magnetic fields from -9 to +9 T.

[1] G. Nazin, Y. Zhang, L. Zhang, E. Sutter, P. Sutter, Nature Physics 6, 870–874 (2010)

Quantum dot photoluminescence
One prominent yet difficult example of spectroscopy of semiconductor 
quantum dots (QDs) is the resonant optical laser excitation of single photon 
emitters. This yields additional information about the emitters than the 
more ubiquitous non-resonant excitation. The attoCFM I can be upgraded 
with a resonant fluorescence package, that permits alignment free switching 
between off resonant PL measurements and RF thanks to our cryogenic apochromatic 
objectives. The integrated high precision rotators enable extinction ratios of 
107 [1], just a factor 10 away from the world record in research labs [2], while 
allowing an unprecedented flexibility of use.

[1] attocube AppNote M45 - attoCFM I - Resonant spectroscopy on a single quantum dot
[2] A.V. Kuhlmann et al., Review of Scientific Instruments 84, 073905 (2013).
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