

Ultrafast Nano-Spectroscopy

probing ultrafast dynamics at the nanoscale

attocube systems AG | Eglfinger Weg 2 | 85540 Haar Germany | info@attocube.com | www.attocube.com

© 2023-01, attocube systems AG

— www.attocube.com

Applications Collection

NANOSCALE ANALYTICS

Recommended Product: *IR*-neaSCOPE^{+fs}


IR-neaSCOPE^{+fs} pushes the spatial resolution limits of pump-probe spectroscopy. Based on nano-FTIR fs-laser system, it provides a fully integrated hardware & software solution for capturing time dynamic phenomena at the nanoscale.

IR-neaSCOPE^{+fs}

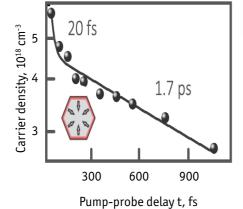
fully integrated turn-key system → for concentrating on research rather than on technology

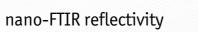
- highest temporal resolution
- \rightarrow using chirp-free optics for light focusing and collection
- unprecedented customization potential
- \rightarrow by flexible hardware & software interfaces

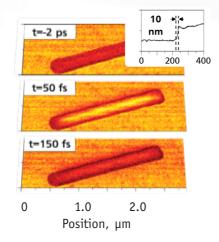
Enables ultrafast pump-probe spectroscopy at 10 fs temporal and 10 nm spatial resolution.

Patented dual-beam design, dispersion-free optics and optional SDK provide compatibility with a large variety of pump & probe lasers for the realization of sophisticated high-power experimental setups and ground-breaking ultrafast research.

> Visit our webpage IR-neaSCOPE^{+fs}


Probing carrier depletion in InAs nanowires by ultrafast nano-FTIR spectroscopy


The unique, patented dispersion-free dual beam-path design of *IR*-neaSCOPE^{+fs} naturally supports pump-probe experiments with visible, IR and THz beams, and enables the nanoscale investigation of carrier dynamics in semiconductors with fs temporal resolution.


Ultrafast nano-FTIR

Carrier dynamics

Ultrafast carrier injection due to femtosecond near-IR photoexcitation of InAs leads to the formation of a pronounced dip (blue line) in the nano-FTIR spectra (left), whose spectral position is determined by the plasma resonance of the created hot electrons and directly relates to the carrier concentration. Changing the pump-probe delay allows for monitoring of the carrier relaxation dynamics. Such an analysis performed with *IR*-neaSCOPE^{+fs} on a single InAs nanowire with 10 fs temporal & 10 nm spatial resolution reveals an ultrafast formation of a surface depletion layer and even allows for the characterization of its depth.

nature

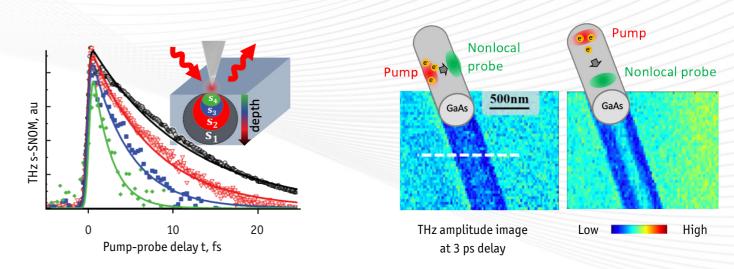
photonics

NANO-LETTERS

M. Eisele, et al.,

2014.8.841

Nano Lett. 2014, 14, 4529


Nature Photonics

M. Wagner et al.

Ultrafast nano-FTIR opens path towards efficient electronics & laser sources

Investigating charge carrier confinement and transport in three dimensions in GaAs nanowires

neaSCOPE^{+fs} simultaneously measures multiple near-field harmonics that scoop different sample volumes, thus enabling depth-sensitive investigation of carrier dynamics. Largest optical access to the probing tip allow for unprecedented beampath customization including for non-local pump-probe nano-imaging.

Depth dependence of carrier dynamics

neaSCOPE^{+fs} allows for depth dependent investigation of transient carrier dynamics based on the measurement of s-SNOM signal demodulated at higher harmonics of the tip tapping frequencies s_n that scoop smaller sample volumes. Varying time decay of the THz signal in of GaAs nanobars measured by ultrafast THz nanoscopy could indicate different relaxation time at the surface vs. bulk, suggesting an electron band bending and emphasizing a crucial role of interfaces onto the electron response in nanostructures.

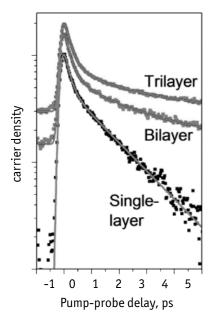
> Nanoscale pump-probe enables studying non-local electron dynamics

www.attocube.com

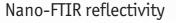
Non-local ultrafast THz nanoscopy

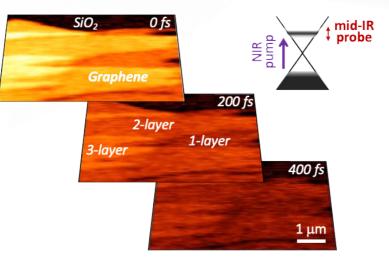
neaSCOPE^{+fs} customized to independently focus near-IR pump & THz probe beams enabled femtosecond-resolved investigation of nonlocal diffusion of photoexcited charge carriers in undoped GaAs nanowires. The appearance of THz contrast in the nanowire indicates the arrival of charges from the pump region. neaSCOPE^{+fs} accurately timed the phenomenon, providing carrier diffusion time and elucidating strong anisotropy with respect to the nanowire axis, which demonstrates a capability to measure carrier drift/diffusion velocities in materials with anisotropic optoelectronic properties.

V. Pushkarev et al., Adv. Funct. Mater. 2022, 32, 2107403



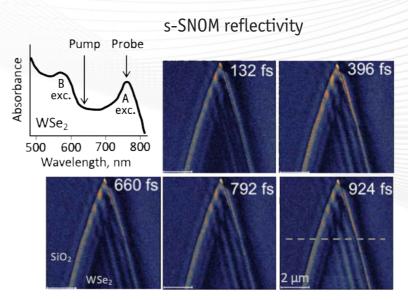
A. Pizzuto et al., ACS Photonics 2021, 8, 2904-11



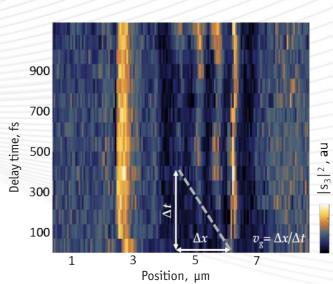

Ultrafast optical modulation of graphene plasmons by pump-induced electron heating

IR-neaSCOPE^{+fs} is a unique ready-to-use nanoscale pump-probe system that provides ultrafast nano-FTIR spectroscopy with <10 nm spatial and <100 fs temporal resolution. Tip-enhancement provided by s-SNOM boosts the sensitivity and allows for lower pulse energy & MHz repetition rates for gentle time-resolved analysis of 2D materials at the nanoscale.

IR-neaSCOPE^{+fs} reveals ultrafast femtosecond switching in Graphene

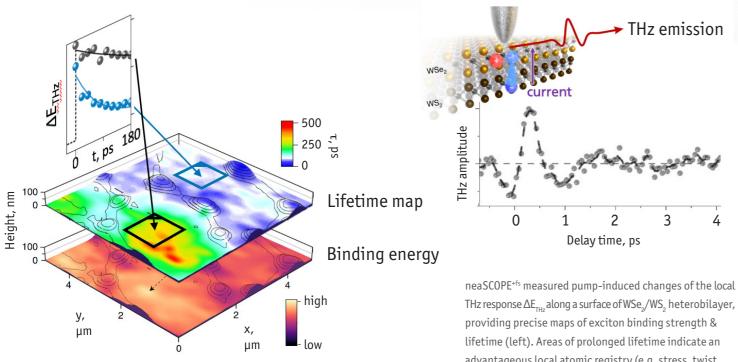

Transient near-field response measured by IR-neaSCOPE^{+fs} in exfoliated single- to tri-layer graphene revealed bi-exponential dynamics. The common rapid initial relaxation at the 100 fs time scale is assigned to a cooling of hot carriers via optical phonon excitation. Further picosecond decay depends on the number of layers indicating the relaxation via acoustic phonons. Modeling of the measured data allowed for an extraction of Drude weights and revealed ultrafast tuning of plasmon resonances under 100x weaker illumination vs. metallic nanostructures, indicating superiority of Graphene for next generation electronics.

M. Wagner et al


Femtosecond polariton interferometry of transient exciton-polaritons in WSe, with near-IR probe

neaSCOPE^{+fs} is purposely designed to provide high interferometric stability for pump-probe at NIR and visible frequencies. Reflective optics and integrated delays enable investigations of exciton-polariton dynamics in TMDs at the relevant time & energy scales by easy integration of custom light sources.

neaSCOPE^{+fs} equipped with custom ultrafast visible pump (~650 nm) and near-IR probe (760 nm) illumination captured the transient formation & propagation of exciton-polaritons (EPs) in WSe, down to single monolayer in thickness. Analysis of position vs. time profile (right) revealed a remarkably slow polariton group velocity ~0.017c attributed to a strong Coulomb interaction in the thin transition metal dichalcogenide (TMD) and an increased damping due to collision with photoinjected electrons. Understanding the spatiotemporal evolution of EPs in TMDs paves the way for the utilization of slow light phenomena in optical memory, processing and sensing.


Reflectivity line profile

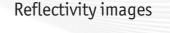
neaSCOPE enables in-situ ultrafast coherent control of TMD systems at the nanoscale

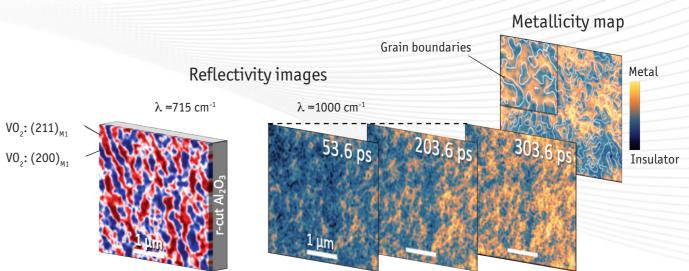
NANOSCALE ANALYTICS

Investigating exciton tunnelling & emission in vdW materials using ultrafast THz nanoscopy

Dual-beam path design of neaSCOPE^{+fs} provides two independent ports for illumination and light collection. Combined with a patented high-NA parabola, it enables nanoscale pump-probe with integrated TDS or custom THz sources for time-resolved nanoscale analysis of quantum materials.

neaSCOPE^{+fs} can directly probe femtosecond exciton dynamics at the nanoscale


NANO LETTER » T. Siday et al., Nano Lett. 2022, 6, 2561-68


nature

M. Plankl et al., Nature Photonics photonics 2021, 15, 594-600 advantageous local atomic registry (e.g. stress, twist angle, etc.). In addition, interlayer tunneling of pumpgenerated excitons creates an out-of-plane current that acts as a source of a coherent THz emission. neaSCOPE+fs was able to measure this emission on a subcycle time scale, providing direct access to femtosecond charge transfer dynamics (incl. tunneling current and time (top) constant. This demonstrates ultrafast in-situ investigation of Mott phase transitions, energy harvesting and light emission in atomically thin heterostructures at the nanoscale targeting the development of advanced functional nanomaterials.

Transient heterogeneity of light-induced phase transition in VO,

Low drift delivered by center-symmetric design of neaSCOPE^{+fs} enables repeated nanoimaging of the same area at multiple time delays or frequencies. Powerful SDK allows for integration of existing OPA & OPO sources for extending pump-probe analysis of quantum materials to the nanoscale.

Steady-state s-SNOM nano-imaging near resonant energies of VO₂'s IR-active phonon (~715 cm⁻¹) exposed hidden preexisting disorder within its thin film's monoclinic phase. Correlation of the resulting domain map with transient contrast at 1000 cm⁻¹ due to light-induced dielectric-tometal phase transition (imaged by IR-neaSCOPE^{+fs}) directly elucidated anchored heterogeneous nucleation of metallicity at rate 40 nm/ns originating from the grain boundaries. Such nanoanalysis could play a key role in establishing the local character of emergent phenomena in quantum materials undergoing light-induced phase transitions.

Time-resolved nanoscopy provides key insights into transient phase separation

NANOSCALE ANALYTICS

Other Applications realized with *IR*-neaSCOPE^{+fs}

nano-FTIR for Polymers

chemical characterization at the nanoscale

Nanocomposite polymers, multilayer thin films, nanofibers and other polymer nano-forms often offer new properties or enhanced performance compared to bulk materials, demanding tools for chemical analysis with nanoscale spatial resolution for their investigations. nano-FTIR and s-SNOM are two leading techniques for nanoscale chemical mapping and identification.

nano-FTIR for Biomaterials

nanoscale compositional and structural analysis

nano-FTIR can perform in-situ study of melanine in human hair for cosmetics treatment analysis. Shed light on biochemistry of cell membranes & improve efficiency of drug delivery. Analyze protein secondary structure in amyloid fibrils. And elucidate the nuclear organization of white-blood cells.

Inorganic Materials

spectroscopic chemical analysis at the nanoscale

nano-FTIR spectroscopy and imaging have been successfully applied for material identification & mapping with nanometer precision using material-specific infrared spectroscopic signatures. This applications collection focuses on nanoscale investigation of inorganic materials in energy-storage, mineralogy, archaeology and corrosion sciences.

Evaluate the capabilities of our technology & products.

Successful test results could significantly increase the approval chance of your grant application.

Additional Services

Monthly reviews of neaspec publications.

Keep you up to date in the field of nanoscale analytics and help you discover new neaSCOPE applications.

NANOSCALE ANALYTICS